Учет отдельных факторов в уравнении материального баланса. Учет ретроградных явлений в пласте при разработке газоконденсатной залежи. Уравнения материального баланса

Развитие теоретических основ проектирования и разработки газовых и газоконденсатных месторождений можно разделить на 4 этапа.

В течении I этапа (дореволюционные годы и первые годы Советской власти) скважины бурили на случайно открытых газовых месторождениях в непосредственной близости от потребителя газа. Бурение последующих скважин проводилось по соседству с предыдущими, без предварительной разведки, в объеме, необходимом для подачи нужного количества газа потребителю. (Мельниковское, Мелитонольское месторождения в Ставрополье, и месторождение Дагестанские огни).

II этап пришел на смену кустарным методам разработки. На этом этапе применялись чисто эмпирические методы разработки газовых месторождений с механическим распространением на них практики разработки нефтяных месторождений, а так же методов разработки газовых месторождений США.

III этап характеризуется созданием и внедрением научно обоснованных методов эксплуатации газовых месторождений. Эта работа проводилась в Московском нефтяном институте им. Н.М. Губкина.

На основе полученных результатов наряду с проведением дальнейших теоретических исследований были выполнены и внедрены первые научно обоснованные проекты разработки газовых месторождений треста Куйбышевгаз и в дальнейшем и на др. месторождениях (Шебелинсского, Северо – Ставропольского, Газлинского и др.)

В результате научно – исследовательских работ III-го этапа в развитии теории разработки газовых месторождений были достигнуты значительные успехи. Созданы газодинамические методы расчета изменения во времени потребного числа газовых скважин, пластовых, забойных и устьевых давлений, приближенные методы расчета продвижения контурных или подошвенных вод при разработке месторождений в условиях водонапорного режима.

Вместо господствовавшего ранее режима постоянного процента отбора:

где: % - постоянный процент отбора,

q РГ – рабочий дебит газовой скважины,

q СКВ – дебит фонтанирующей газовой скважины.

считавшегося единственно рациональным технологическим режимом эксплуатации газовых скважин, обоснованы и внедрены в практику проектирования новые технологические режимы. К их числу относится режимы поддержания постоянного максимально допустимого градиента давления на забое скважины или постоянной депрессии при недостаточной устойчивости коллекторов, режим предельного безводного дебита газовых скважин при наличии подошвенной воды.

Исследования фильтрации газа к несовершенным скважинам в условиях нарушения закона Дарси привели к созданию и повсеместному внедрению новой методики обработки и интерпретации результатов исследования газовых скважин. Появились методы исследования скважин при нестационарных режимах фильтрации газа.

В результате выполнения ряда проектов разработки газовых месторождений, накопился значительный опыт комплексного применения методов геологии, геофизики, подземной газогидродинамики и отраслевой экономики.

На основе геолого-геофизических исследований устанавливается геологическое строение газовой залежи, составляется представление о пластовой водонапорной системе, возможном режиме газовой залежи. По данным испытания скважин определяются параметры пласта.

В результате газогидродинамических расчетов определяется изменение во времени необходимого числа скважин для выполнения плана добычи газа. На основе анализа технико-экономических показателей различных вариантов разработки выбирается наилучший из них.

В начале 60 – х годов теория проектирования и разработки месторождений природных газов вступает в IV этап своего развития. Особенностью этого этапа является комплексное применение в практике проектирования, анализа и определения перспектив разработки, газовых и газоконденсатных месторождений методов геологии, геофизики, в том числе ядерной геофизики, подземной газогидродинамики, техники и технологии добычи газа, появляется стремление к использованию возможностей современных быстродействующих электронных вычислительных и аналоговых машин. При этом главной задачей является нахождение при помощи ЭВМ такого варианта разработки газового (газоконденсатного) месторождения и обустройства промысла, который отличался бы оптимальными технико-экономическими показателями.

Кристаллизация с удалением части растворителя за счет выпаривания влаги (изогидрическая) . Введем обозначения: тпер, ткр, тм - массы исходного пересыщенного раствора, кристаллов и маточного (межкристального) раствора, кг (кг/с); впер, вм - массовая доля сухих веществ в пересыщенном и маточном...
  • Материальный и тепловой балансы процессов горения
    Горение, как и любой химический процесс, подчиняется основным законам природы (например, закону сохранения вещества и энергии), что позволяет теоретически оценить количество окислителя, необходимого для горения веществ и материалов; состав и объем продуктов горения; количество выделившегося тепла; температуру...
    (ТЕОРИЯ ГОРЕНИЯ И ВЗРЫВА)
  • Материальный баланс.
    По закону сохранения массы количество поступающих веществ ^GH должно быть равно количеству веществ GK , получаемых после завершения процесса, т.е. без учета потерь: Однако в практических условиях неизбежны потери веществ (?Gn), поэтому Материальный баланс составляют как для отдельного процесса, так и...
    (ПРОЦЕССЫ И АППАРАТЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ)
  • Материальный баланс.
    Общее количество выпаренной влаги определяется по уравнению (6.8). На основе уравнения (6.7) могут быть рассчитаны концентрации растворов между корпусами. Например, для двухкорпусного выпарного аппарата концентрация после первого корпуса определяется по уравнению где Wi - расход выпаренной влаги...
    (ПРОЦЕССЫ И АППАРАТЫ ПИЩЕВЫХ ПРОИЗВОДСТВ)
  • Теплообмен в замкнутой системе. Уравнение теплового баланса
    Если систему из нескольких тел изолировать и создать условия для их теплообмена между собой, то установится тепловое равновесие. В результате теплообмена тела будут иметь одинаковую температуру. Этот факт является опытным и наблюдается во всех случаях теплообмена (иногда его рассматривают как нулевой...
    (МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА)
  • Тепловой баланс при сварке
    Основная доля тепловой энергии при точечной, рельефной и шовной сварке генерируется за счет действия объемно распределенного источника. Роль второстепенных источников в обшем тепловом балансе считается незначительной. Их доля не превышает порядка 10% от всей генерируемой энергии на участке между электродами,...
    (ТЕХНОЛОГИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ: ТЕОРИЯ И ТЕХНОЛОГИЯ КОНТАКТНОЙ СВАРКИ)
  • (ЭЛЕКТРИЧЕСКИЕ И ЭЛЕКТРОННЫЕ АППАРАТЫ)
  • Подземная гидромеханика – наука о движении жидкости, нефти, газа и их смесей в пористых средах, слагающих продуктивные пласты - является теоретической основой разработки нефтяных и газовых месторождений, одной из профилирующих дисциплин в учебном плане нефтяных вузов.

    В основе подземной гидравлики лежит представление о том, что нефть, газ и вода, заключенные в пористой среде, составляют единую гидравлическую систему.

    Движение жидкости и газа в продуктивных пластах связано с процессом добычи из залежи нефти и газа. Это движение обладает специфическими особенностями, отличающими его от движения жидкости и газе по трубам или в открытых руслах. При движении природных жидкостей (нефть, вода) или газа в естественном грунте частицы жидкости (газа) перемещаются через поры грунта (или по его трещинам), т.е. через мельчайшие каналы, образовавшиеся между частицами грунта вследствие их неплотного прилегания друг к другу. Такое движение жидкостей и газа в природной пористой среде называется фильтрацией.

    В теории фильтрации принимается, что пористая среда и насыщающие ее флюиды образуют сплошную среду, т.е. заполняют любой выделенный элементарный объем непрерывно. Изучением законов фильтрации жидкостей и газа и занимается подземная гидрогазодинамика.

    Особенностью теории фильтрации нефти и газа в природных пластах является одновременное рассмотрение процессов в областях, характерные размеры которых различаются на порядки: размер пор (до десятков микрометров), диаметр скважин (до десятков сантиметров), толщины пластов (до десятков метров), расстояния между скважинами (сотни метров), протяженность месторождений (до сотен километров).

    Следует отметить, что проектирование разработки нового месторождения нефти или газа, а также эксплуатация скважин невозможны без широкого применения законов подземной гидрогазодинамики. На основании законов гидрогазодинамики решаются такие задачи, как размещение скважин на нефтегазоносном месторождении (выбор сетки разработки); определение количества и порядок ввода скважин в эксплуатацию; обоснование режима работы эксплуатационной скважины; регулирование и контроль фронта вытеснения нефти или газа (стягивание контура нефтеносности); исследование скважин и пластов с целью определения их фильтрационных характеристик и т.д. Решение этих вопросов на базе законов подземной гидрогазодинамики позволяет планировать добычу нефти и газа, а следовательно, и оценивать экономическую эффективность технологических мероприятий по разработке и эксплуатации нефтяных и газовых месторождений.

    2. Цель и задачи курсовой работы

    Курсовая работа по дисциплине «Подземная гидромеханика»

    выполняется студентами после изучения курса данного предмета. Наряду с лекциями, практическими занятиями и выполнением контрольных заданий написание курсовой работы способствует углублению знаний студентов по изучаемой дисциплине.

    Выполнение курсовой работы предполагает закрепление полученных

    студентами знаний, развитие самостоятельных творческих навыков работы

    с литературой, научно-техническими и методическими материалами, а также приобретение практического опыта аналитической работы.

    Выполнение студентами курсовой работы по подземной гидромеханике является весьма важным этапом при изучении этой дисциплины. Цели и задачи выполнения курсовой работы:

      углубление и закрепление теоритических знаний, полученных студентами во время лекционных занятий и при самостоятельном изучении курса;

      привитие навыков самостоятельной работы с учебной и научной литературой;

      выработка аналитического мышления при изучении и решении поставленных вопросов и задач;

      выработка умения грамотно и сжато излогать суть вопроса, поставленного в теме курсовой работы;

      привитие навыков выполнения расчетов по тем или иным формулам, применеия системы единиц измерения СИ;

      привитие умения делать анализ и вывод по полученным результатам;

      привитие навыков оформления курсовой работы согласно предъявляемым требованиям.

    Выполнение курсовой работы является одним из важных моментов подготовки к дипломному проектированию. Взаимосвязь курсового и

    дипломного проектирования обеспечивается продуманным выбором

    направления технологического развития конкретного нефтегазодобывающего предприятия на стадии курсового проектирования.

    Выполнение курсовой работы развивает у студента навыки самостоятельного творчества, воспитывает чувство ответственности за

    полученные результаты, приобщает его к научно-исследовательской работе, развивает навыки инженерно-технических расчетов и анализа результатов.

    На любом этапе предусматривается возможность консультирования с

    руководителем по курсовому проектированию при возникновении вопросов и сложных моментов в процессе курсового проектирования.

    Выполнеие курсовой работы является заключительным этапом при изучении курса подземной гидромеханике.

    3. Краткая теория по теме курсовой работы

    Уравнение материального баланса для газовой залежи - основа метода определения запасов газа по данным об изменении добытого количества газа и средневзвешенного по газонасыщенному объему порового пространства пластового давления. Уравнение материального баланса в той или иной форме записи используется при определении показателей разработки месторождений природного газа в условиях газового или водонапорного режима. Дифференциальные уравнения истощения газовой залежи применяются в расчетах показателей разработки газовых месторождений в период падающей добычи газа. Приведем вывод этих широко распространенных уравнений.

    3.1 Уравнение материального баланса при газовом режиме залежи

    Согласно принципу материального баланса, начальная масса М н газа в пласте равняется сумме отобранной к моменту t массы газа М доб и оставшейся на момент t массы газа М ост в пласте, т.е.

    М н = М ост (t ) + М до6 (t ).

    Если обозначить начальный объем порового пространства через Ώ н, а средний для залежи коэффициент газонасыщенности (отношение газонасыщенного объема к общему поровому объему залежи) через, то начальная масса газа в залежи до ее разработки будет

    М н =Ώ н р н

    Здесь р н - плотность газа при пластовой температуре Т пл и начальном пластовом давлении.

    Согласно уравнению состояния для реального газа

    ρ н = ρ ат p н z ат / p ат z н ,

    где ρ ат - плотность газа при р ат и Т пл,z н и z ат коэффициенты сверхсжимаемости газа при температуре Т пл и давлениях р н и р ат соответственно.

    Следовательно, начальная масса газа в пласте равняется

    М н =Ώ н ρ ат p н z ат / p ат z н (1.1)

    По мере разработки газовой залежи давление в ней падает. Пластовая температура в процессе разработки газового месторождения остается (практически) неизменной. Тогда к некоторому моменту t при среднем пластовом давлении (t) масса газа в пласте

    М ост (t ) =Ώ н ρ ат (t ) z ат / p ат z ((t )) (1.2)

    Пусть изменение во времени отбора газа из залежи в единицу времени определяется функциональной зависимостью Q*=Q*(t). Тогда за время t суммарная масса отобранного газа составит

    М до6 (t )= ρ ат Q * доб (t )= ρ ат * (t ) dt (1.3)

    С учетом выражений (1.1)-(1.3) уравнение материального баланса для газовой залежи в случае газового режима записывается в виде

    н р н z ат / z н =Ώ н (t ) z ат / z [ (t )]+ p ат Q * доб (t ) (1.4)

    Здесь Q* доб (t)- количество добытого газа к моменту t, приведенное к р ат и Т пл, м 3 .

    Обычно добытый из залежи объем газа вычисляется при стандартной температуре Т ст (293° К) и р ат. Добытое количество газа, приведенное к стандартным условиям, обозначим Q доб (t). В этом случае уравнение материального баланса принимает вид

    н р н / z н =Ώ н (t ) / z [ (t )]+ p ат Q доб (t пл ст (1.5)

    Коэффициент z ат близок к единице. Поэтому здесь и в дальнейшем принимаем, что z ат = 1.

    Уравнение материального баланса (1.4) можно получить интегрированием дифференциального уравнения истощения газовой залежи. Поступим наоборот. Из уравнения (1.4) получим дифференциальное уравнение истощения газовой залежи. Для этого продифференцируем по времени уравнение (1.4) :

    dQ * доб (t )/ dt =Ώ н p ат dt [ z (t ))]

    С учетом выражения для добытого количества газа (1.3) получаем следующее искомое уравнение

    Q *(t ) =Ώ н p ат dt [ z (t ))] (1.6)

    Из уравнения (1.6) следует, что количество отбираемого в единицу времени газа в момент t пропорционально скорости (темпу) изменения приведенного среднего пластового давления в залежи на тот же момент.

    3.2 Уравнение материального баланса при водонапорном режиме залежи

    При водонапорном режиме формулировка принципа материального баланса следующая: начальная масса газа в пласте равняется сумме добытой массы газа и массы газа, оставшейся в газонасыщенном и обводненном М о6в объемах пласта.

    Так как обводненный объем пласта равен Ώн - Ώ(t), то в этом объеме при среднем коэффициенте остаточной газонасыщенности α ост находится газ в количестве

    М обв (t ) = ρ ат [Ώн - Ώ(t )] α ост (t ) / p ат z [ (t )] (1.7)

    Следовательно, уравнение материального баланса для газовой залежи в условиях водонапорного режима с учетом неполноты вытеснения газа водой записывается в виде

    н р н / z н =Ώ н (t ) / z [ (t )]+ p ат Q доб (t пл ст +

    +[Ώн - Ώ(t )] α ост (t )](t ) / z [ (t )] (1.8)

    Здесь - среднее давление в обводненном объеме пласта; z() - коэффициент сверхсжимаемости при и Т пл; α ост - отношение защемленного объема газа (при давлении и температуре Т пл) к общему поровому объему обводненной зоны пласта. По данным лабораторных исследований, коэффициент остаточной газонасыщенности зависит от давления в обводненном объеме, что и отражено в уравнении (1.8).

    При среднем коэффициенте остаточной газонасыщенности α ост ( суммарное количество воды Q B (t), поступившей в залежь к некоторому моменту t , распределится в объеме Q в (t)/[-α ост ( Тогда газонасыщенный объем (внутри контура газ-вода) ко времени t составит:

    Ώ(t )=Ώ н - Q в (t ) /[- α ост ( ) (1.9)

    Таким образом, под текущим газонасыщенным объемом (в 1.8) понимается его выражение согласно (1.9).

    Не представляет труда из уравнения материального баланса (1.8) получить дифференциальное уравнение истощения залежи при водонапорном режиме.

    Принципиальных затруднений для использования (1.8) и (1.9) при определении показателей разработки газовых месторождений в условиях водонапорного режима не имеется. Однако использование указанных формул усложняет методику расчетов, что объясняется необходимостью определения α ост и учета изменения этого коэффициента от переменного давления . Кроме того, при анализе фактических данных затрудняется определение зависимости Расчеты значительно упрощаются, если в (1.8) принять следующее допущение

    Условие (1.10) характеризует допущение о том, что газ защемляется при давлении, равном среднему пластовому давлению в залежи, и изменение коэффициента остаточной газонасыщенности определяется изменением во времени среднего пластового давления, т.е. α ост = α ост (). Тогда из (1.8) с учетом (1.9) и (1.10) получим

    z [ (t )][( н р н / z н ) - p ат Q доб (t пл ст ]/ Ώ н - Q в (t ) (1.11)

    Важность уравнения (1.11) состоит в том, что для использования его, благодаря допущению (1.10), не требуется знания трудно определяемой а осх для обводненной зоны пласта и установления зависимости ее изменения во времени. Уравнение (1.11) обеспечивает высокую точность при прогнозных расчетах до отбора из залежи 50% и более от начальных запасов газа в пласте. При больших отборах необходимо использовать уравнения (1.8) и (1.9).

    В ряде случаев, при значительной неоднородности пласта по коллекторским свойствам, в обводненной зоне может оставаться газ в виде макрозащемленных объемов. Тогда при анализе разработки в уравнении материального баланса его необходимо учитывать. В прогнозных же расчетах весьма затруднительно заранее учесть возможность формирования макрозащемленных объемов газа. Строго говоря, их не следует допускать в принципе, предпринимая соответствующие меры по регулированию системы разработки.

    3.3 Учет отдельных факторов в материальном балансе залежи

    Теория и практика разработки месторождений природных газов приводят к необходимости учета в уравнении материального баланса некоторых процессов, проходящих в продуктивном пласте при снижении давления.

    Учет ретроградных явлений в пласте

    При разработке газоконденсатной залежи в пласте выпадает конденсат. Поэтому начальная масса М н газоконденсатной смеси в пласте равняется сумме текущей массы M(t) газоконденсатной системы в пласте, массы M к (t) выпавшего в пласте сырого конденсата к моменту t и массы добытого M доб (t) пластового газа к моменту t , т.е.

    М н = M (t ) + M к (t ) + M доб (t ) (1.12)

    Поступая аналогично предыдущим случаям, получаем следующее уравнение для газоконденсатной залежи применительно к газовому режиму:

    н р н Т ст ρ гн / p ат z н Т пл =[Ώ н -ΔΏ()](t ) Т ст ρ г ()/ z () p ат Т пл + +ΔΏ() ρ к ()+ M доб (t ) (1.13)

    Здесь Ώ н, ΔΏ() - соответственно начальный газонасыщенный поровый объем залежи и объем пор пласта, занятых выпавшим сырым конденсатом к моменту t ; р н , (t) - начальное и текущее среднее пластовые давления, взвешенные соответственно по поровым объемам Ώ н и Ώ н -ΔΏ(); z н,z() - коэффициенты сверхсжимаемости газоконденсатной системы при температуре Т пл и соответственно при давлениях р н и (t); ρ гн, ρ г () - соответственно плотность пластового газа начального и текущего состава, приведенные к р аг и Т ст; ρ к () - плотность выпавшего в пласте сырого конденсата на момент t , приведенная к давлению (t) и температуре Т пл .

    При определении массы добытого пластового газа к моменту t используется следующее рекуррентное соотношение:

    M доб (t ) = M доб (t - Δ t ) +{ Q доб сг (t )β[ (t )]- Q доб сг (t - Δ t )β[ (t - Δ t )]}{ ρ г [ (t )]+ + ρ г [ (t - Δ t )]} (1.14)

    Здесь M доб (t - Δt) - масса добытого пластового газа на момент t - Δt; Q доб сг (t - Δt) , Q доб сг (t) - добытые количества сухого газа на моменты t - Δt и t соответственно, приведенные к р ат и Т ст ; Δt - шаг по времени; β() - объемный коэффициент перевода сухого газа в пластовый газ при стандартных условиях, β = Q доб пл г / Q доб сг.

    Деформационные изменения в продуктивном пласте

    Лабораторные эксперименты с образцами керна показывают, что при снижении внутрипорового (пластового) давления уменьшаются коэффициенты пористости и проницаемости. Проницаемость карбонатных коллекторов в значительной мере трещинная. Она особенно чувствительна к изменениям давления в призабойной зоне или отдаленных областях пласта.

    Результаты экспериментов показывают, что зависимость коэффициента пористости от давления обычно экспоненциальная:

    m = m 0 ехр[-а m (p н - р)]

    Здесь m 0 - коэффициент пористости при р н; а m - коэффициент сжимаемости пор, 1/МПа.

    Тогда нетрудно видеть, что уравнение материального баланса для газовой залежи с деформируемым коллектором записывается в виде (при принятии = 1)

    (t ) ехр[-а m (p н - (t ) )]/ z [ (t )]= р н / z н - p ат Q доб (t пл / Ώ н Т ст (1.15)

    Оценки показывают допустимость применения уравнения (1.15) при высоких коэффициентах газонасыщенности а (при ≥0,8).

    При деформации пласта - коллектора коэффициент газонасыщенности изменяется, во-первых, вследствие уменьшения порового объема залежи и, во-вторых, по причине расширения остаточной воды. Обозначим текущий коэффициент газонасыщенности пласта через. Тогда уравнение материального баланса представляется следующим образом:

    (t )[(t )] ехр[-а m (p н - (t ) )] / z [ (t )]= р н / z н - p ат Q доб (t пл / / Ώ н Т ст

    Здесь [(t )]= 1-(1- ) ехр[(а m + β ж )(p н - (t ) )]; β ж - коэффициент объемной упругости жидкости.

    Влияние деформации пласта-коллектора на зависимость / z ()= f (Q доб (t )) проиллюстрировано на рис. 2.17. При этом запасы газа в рассматриваемом пласте Q зап =100 млрд.м 3 , а р н = 30 МПа. Содержание метана в газе 98%, пластовая температура 323К, = 1.

    Значение а m = 10 -2 1/МПа (для сопоставления отметим, что в случае гранулярного коллектора a m ≈ 10 -3 1/МПа).

    Итак, вследствие деформации продуктивного коллектора зависимость / z ()= f (Q доб (t )) (линия 2) располагается выше соответствующей зависимости при отсутствии деформации (линия 1), что объясняется уменьшением во времени порового объема залежи. При = 0 линии 1 и 2 сходятся в одну точку, так как независимо от того, деформируемый ли пласт или нет, добытое количество газа к моменту, когда = 0, должно равняться начальным запасам газа в пласте. Если проэкстраполировать начальный участок зависимости / z ()= f (Q доб (t )) до оси абсцисс (линия 3), то оцениванием завышенные начальные запасы газа в пласте.

    4.Примеры числовых расчетов и графических решений

    Многие задачи неустановившейся фильтрации газа решаются приближенно по методу последовательной смены стационарных состояний с привлечением уравнения материального баланса газа.

    4.1 Решение задачи о притоке газа к скважине методом последовательной смены стационарных состояний

    Отметим, что метод ПССС основан на следующих предпосылках:

      в каждый момент времени существует конечная возмущенная область, в которой происходит движение газа к скважине;

      движение газа внутри возмущенной области стационарно;

      размер возмущенной области определяется из уравнения материального баланса.

    Рассмотрим решение задачи (методом ПССС) о притоке газа к скважине с постоянным дебитом Q АТ; радиус скважины r C .

    В любой момент времени возмущенной областью является круговая область радиусом R (t) , внутри которой давление распределяется по стационарному закону (6.26)

    Вне возмущенной области давление равно начальному (невозмущенное состояние):

    Р = Р К, r > R (t). (8.16)

    Для возмущенной зоны можно записать выражение дебита по формуле (6.28) для стационарной фильтрации:

    Заметим, что в нашей задаче (при Q АТ = const) забойное давление Р С = Р С (t).

    Для дальнейших выводов выделим из (8.17) отношение:

    и подставим в формулу (8.15). Получим:

    Для нахождение R (t) составим уравнение материального баланса.

    Начальный запас газа (при Р = Р К) в зоне пласта радиусом R (t)

    Текущий запас газа выразим через средневзвешенное давление:

    где определяется по формуле (6.30) установившейся фильтрации

    Так как отбор происходит с постоянным дебитом Q АТ, то отобранная масса газа к моменту t равна. Следовательно

    или с учетом (8.19) и (8.20), имеем

    Подставляя в (8.22) выражения (8.21) для и (8.17) для Q АТ , получим

    Для значений времени, для которых имеем

    Зная закон движения границы возмущенной области в виде (8.23) или (8.24), можно найти давление в любой точке возмущенной зоны пласта и на забое скважины по формуле (8.18)

    Формула (8.25) и (8.26) пригодны как для бесконечного пласта, так и для конечного открытого или закрытого пластов радиусом. В последнем случае они годятся только для первой фазы движения, пока воронка депрессии не достигнет границы пласта, т.е. для.

    Изменение давления во второй фазе зависит от типа газового пласта. Если он закрыт, то давление будет продолжать снижаться во всем пласте, включая границу.

    Если он открытый (Р = Р К при r = R K), т.е. режим водонапорный, то во второй фазе установится стационарный режим с постоянной депрессией

    (Р К - Р С), где

        Приближенное решение задачи об отборе газа из замкнутого пласта

    Рассмотрим задачу об отборе газа из замкнутой круговой залежи радиусом R К. В центре залежи находится скважина радиусом r С. До вскрытия пласта скважиной давление во всей залежи было Р К.

    Рассмотрим две задачи:

      отбор газа с постоянным дебитом (Q АТ = const);

      отбор газа с сохранением давления на скважине (P C = const).

    В первой задаче нас интересует падение давления на границе пласта и на забое скважин.

    Во второй задаче – падение давления на границе и падение дебита Q(t).

    Обе задачи решаем методом ПССС, т.е. с применением законов стационарной фильтрации газа и уравнения истощения газовой залежи. Это уравнение – уравнение материального баланса – заключается в том, что количество газа, извлеченного из пласта за некоторый промежуток времени, равно уменьшению запасов газа в пласте. Так как пласт замкнут, то запасы ограничены и не пополняются извне.

    Выведем это уравнение.

    Если - плотность идеального газа, соответствующая усредненному давлению в пласте; V пор - объем порового пространства пласта, принимаемый постоянным; то уменьшение запасов газа за бесконечно малый промежуток времени запишется в виде

    Отобранная масса газа за тот же промежуток времени будет равна

    Приравнивая (8.28) и (8.29), получим дифференциальное уравнение истощения газовой залежи

    Ранее было показано, что средневзвешенное давление при плоскорадиальной фильтрации газа мало отличается от контурного Р К (в нашем случае Р К – давление на границе замкнутого пласта). Поэтому можно принять и заменяем в (8.30) на:

    Теперь рассмотрим случай первый: Q AT = const .

    Интегрируем это уравнение, учитывая, что при t = 0 Р = Р Н; получаем

    т. е. давление на границе пласта меняется по линейному закону с течением времени (рис.54).

    Для определения закона изменения забойного давления с течением времени, запишем формулу для дебита скважины

    и выразим из нее забойное давление

    Отсюда с учетом выражения (8.33) для Р К находим

    График изменения Р С (t) по (8.36) показан на рис.54.

    Рис. 54 Рис. 55

    Рассмотрим второй случай: Р С = const .

    Для определения зависимости Р К от t подставим выражение для дебита (8.34) в уравнение (8.31) и разделим переменные

    Обозначим и интегрируя от 0 до t и от Р Н до Р К, получим

    Задаваясь различными значениями давления Р К на границе залежи, начиная от Р Н и меньшими, можно найти соответствующие значения времени разработки залежи. Подставляя заданные значения Р К в формулу (8.34), определяем дебиты в эти же моменты времени t. Графики Р К (t) и Q AT (t) для этого случая приведены на рис.55.

        Примеры решения задач

    5.Практическое использование полученных результатов

    Материальный баланс газовой залежи- отражает закон сохранения массы применительно к газовой (газоконденсатной, газогидратной) залежи. При разработке месторождения в условиях газового режима материальный баланс газовой залежи записывается в следующем виде:

    М н = М ост (t) + М доб (t), где

    М н - начальная масса газа в пласте;
    М ост (t) - оставшаяся в пласте масса газа к моменту времени t;
    М доб (t) - масса газа, добытая из залежи к моменту времени t.
    Уравнение материального баланса газовой залежи лежит в основе метода определения начальных запасов газа по падению давления в пласте (используются фактические данные разработки месторождения за некоторый период времени), а также используется при определении показателей разработки газовой залежи при газовом режиме. В случае водонапорного режима при составлении материального баланса газовой залежи учитывается М обв (t) - масса газа, оставшаяся в обводнённой зоне пласта к моменту времени t, т.е.

    М н = М обв (t) + М ост (t) + М доб (t).

    Уравнение применяется при проведении прогнозных расчётов, а также используется для уточнения коллекторских свойств водонапорного бассейна.
    Материальным балансом газовой залежи учитывается деформация продуктивного коллектора (изменение коэффициента пористости, а следовательно, и коэффициента газонасыщенности) при снижении пластового давления. В случае газоконденсатных и газогидратных залежей учитывают также изменение газонасыщенного объёма пласта (в газоконденсатных залежах при снижении пластового давления наблюдается выпадение конденсата из газа, вызывающее уменьшение объёма, в газогидратных - снижение давления вызывает разложение гидратов и, следовательно, увеличение газонасыщенного объёма). Для газогидратной залежи материальный баланс газовой залежи записывается с учётом баланса тепла (в связи со снижением температуры, сопровождающим процесс разложения гидратов), в баланс тепла включается также приток тепла от передачи его через кровлю и подошву пласта.
    Разновидности уравнения материального баланса газовой залежи позволяют проводить газо-гидродинамические расчёты с учётом соответствующих геолого-промысловых факторов (например, с учётом перетоков газа осуществляются расчёты применительно к многопластовым месторождениям).

    В данной курсовой работе я рассмотрел применение уравнения материального баланса при фильтрации газа для решения вопроса подсчета запасов газа методом падения пластового давления (для газового и водонапорного режимов), а также методы решения задач фильтрации газа с помощью уравнения материального баланса (метод последовательной смены стационарных состояний и приближенное решение задачи об отборе газа из замкнутого пласта соответственно).

    Уравнение материального баланса является теоретической основой подсчета запасов газа методом падения пластового давления. Этот метод позволяет оценить текущие извлекаемые запасы газа на момент его применения в зоне, вовлеченной в разработку, и, в первую очередь, из высокопроницаемых пропластков. Вовлечение в разработку низкопроницаемых пропластков по этой методике учитывается в неявной форме. Поэтому по методу падения пластового давления определяются запасы, когда неизвестно, из каких пропластков эти запасы, с какими фильтрационными и емкостными параметрами и когда включились или включатся в разработку эти пропластки. Определяемые методом падения пластового давления запасы в целом зависят от: геометрии (размеров) дренируемой зоны; фильтрационных и емкостных параметров пропластков; параметра анизотропии; запасов упругих сил водоносного бассейна; степени вторжения подошвенной или контурной вод в газовую залежь; темпа отбора газа из месторождения; размещения и числа скважин и др.

    Точность определения запасов газа этим методом зависит от режима залежи. Практически идеальную точность определения запасов газа этим методом можно гарантировать при полном вовлечении в разработку залежи, имеющей газовый режим и однородной по емкостным и фильтрационным параметрам. Как правило, на газовых и газоконденсатных месторождениях имеют место два режима: газовый и водонапорный. В условиях сравнительно интенсивного вторжения воды в газовую залежь точность определения запасов газа снижается из-за отсутствия информации о количестве вторгшейся воды в газовую залежь и изменения давления газа в газовой части залежи. Количество вторгшейся в газовую залежь воды зависит от разности давлений в газоносной и водоносной частях залежи, параметров пласта и упругих запасов водоносного бассейна. В начальной стадии разработки разница в давлениях не велика, и темп падения пластового давления в газовой части близок к темпу газового режима.

    При подсчете запасов газа методом падения пластового давления усредняется практически только один параметр - пластовое давление по площади и при значительной толщине залежи - и по толщине. Очень существенно влияют на запасы газа по этому методу вторжение воды в залежь (не на начальной стадии разработки), перетоки газа и ввод новых скважин или группы скважин в разработку в зоне, уже вовлеченной в разработку.

    Метод падения пластового давления в одинаковой степени применим для отдельных скважин, кустов, установок комплексной подготовки газа, но с одновременным по всем скважинам, кустам и УКПГ измерением давления и отбором газа с последующим суммированием полученных удельных запасов газа по залежи.

    7. Список используемой литературы

    1. Басниев К.С., Власов А.М., Кочина И.Н., Максимов В.М. Подземная гидромеханика: Учебник для вузов. – М., Недра, 1986.

    2. Закиров С.Н. Разработка газовых, газоконденсатных и нефтегазоконденсатных месторождений, М.: «Струна», - 1998.

    3. Чарный И. А. Основы подземной гидравлики, М., Гостоптехиздат, 1956.

    4.Ширковский А.И. Разработка и эксплуатация газовых и газоконденсатных месторождений. - М.: Недра, 1987.

    5. Пыхачев Г.Б., Исаев Р.Г. Подземная гидравлика. М., Недра, 1973.

    6. Евдокимова В.А., Кочина И.Н. Сборник задач по подземной гидравлике. – М., Недра, 1979.

    Федеральное агентство по образованию

    МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

    ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

    ВЫСШЕГО ПРОФЕССИАНАЛЬНОГО ОБРАЗОВАНИЯ

    ФИЛИАЛ УФИМСКОГО ГОСУДАРСТВЕННОГО НЕФТЯНОГО

    ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА В Г.ОКТЯБРЬСКОМ

    Кафедра РРНГМ

    Курсовая работа

    по дисциплине: «Подземная гидромеханика»

    тема: «Методы решения задач фильтрации газа с помощью уравнения материального баланса»

    Вариант №70

    А.А. Прокофьев

    Л.В. Петрова


    C одержание

    1. Введение 3

    2. Цель и задачи курсовой работы 4

    3. Краткая теория по теме курсовой работы 5

    3.1 Уравнение материального баланса при газовом режиме залежи 5

    3.2 Уравнение материального баланса при водонапорном режиме залежи 7

    3.3 Учет отдельных факторов в материальном балансе залежи 8

    4.Примеры числовых расчетов и графических решений 12

    4.1 Решение задачи о притоке газа к скважине методом последовательной смены стационарных состояний 12

        Приближенное решение задачи об отборе газа из замкнутого пласта 14

        решения задачи оперативного управления определяются натуральные показатели оборачиваемости групп материальных ресурсов по...

      1. Изучение и анализ производства медного купороса

        Дипломная работа >> Химия

        ... газ или другое горючее, необходимое в ходе данного метода ... фильтрации лежит принцип разделения неоднородных сред при помощи ... решение не может быть использовано для осушествления поставленной задачи ... значения параметров. Уравнение материального баланса ύ0iρ0i ...

      2. Коллекторские свойства горных пород (1)

        Практическая работа >> География

        В случае фильтрации газа это условие... для решения многих задач . - ... на основе уравнения материального баланса , записанного для... и L оцениваются и уточняются методом последовательных проб и приближений. Рассмотрим... химическим способом с помощью добавления соды...

      3. Технологический процесс при производстве ударопрочного полистирола

        Дипломная работа >> Промышленность, производство

        ... задач производства полиформальдегида (гомополимераа) является получение конечного продукта заданного качества с минимальными материальными ... величины. С помощью переменной j отмечают...). Погрешность этого метода фильтрации определяется путем подстановки...

    Основанием для получения уравнения реактора любого типа является материальный баланс, составленный по одному из компонентов реакционной смеси.

    Составим такой баланс по исходному реагенту A при проведении простой необратимой реакции A R .

    В общем виде уравнение материального баланса:

    где В А (пр) – количество реагента А , поступающего в единицу времени в тот реакционный объем, для которого составляется баланс;

    В А (расх) – количество реагента А , расходуемого в единицу времени в реакционном объеме.

    Учитывая, что поступивший в реактор реагент А расходуется в трех направлениях, можно записать:

    где В А (х.р) – количество реагента А , вступающее в реакционном объеме в химическую реакцию в единицу времени;

    В А (ст) – сток реагента А , т.е. количество реагента А , выходящее из реакционного объема в единицу времени;

    В А (нак) – накопление реагента А , т.е. количество реагента А , остающееся в реакционном объеме в неизмененном виде в единицу времени.

    С учетом уравнения (3) уравнение (2) записывается в виде:

    Разность между В А (пр) и В А (ст) представляет собой количество реагента А , переносимое конвективным потоком В А(конв) :

    Принимая это во внимание, уравнение (4) можно записать:

    В каждом конкретном случае уравнение материального баланса принимает различную форму.

    Баланс может быть составлен

    v для единицы объема реакционной массы,

    v для бесконечно малого (элементарного) объема,

    v а также реактора в целом.

    При этом можно рассчитывать материальные потоки,

    · проходящие через объем за единицу времени,

    · либо относить эти потоки к 1 моль исходного реагента или продукта.

    В общем случае , когда концентрация реагента непостоянна в различных точках реактора или непостоянна во времени , материальный баланс составляют в дифференциальной форме для элементарного объема реактора :

    где C A – концентрация реагента А в реакционной смеси;

    x , y , z – пространственные координаты;

    –составляющие скорости потока;

    D – коэффициент молекулярной и конвективной диффузии;

    r A – скорость химической реакции.

    Левая часть уравнения (7) характеризует общее изменение концентрации исходного вещества во времени в элементарном объеме, для которого составляется материальный баланс. Это – накопление вещества А , которому соответствует величина В А (нак) в уравнении (6).

    Первая группа членов правой части уравнения (7) отражает А вследствие переноса его реакционной массой в направлении, совпадающем с направлением потока .

    Вторая группа членов правой части уравнения (7) отражает изменение концентрации реагента А в элементарном объеме в результате переноса его путем диффузии.


    Указанные две группы правой части уравнения характеризуют суммарный перенос вещества в движущейся среде путем конвекции и диффузии. В уравнении (6) им соответствует величина В А(конв) такой суммарный перенос вещества называют конвективным массообменом, или конвективной диффузией).

    И, наконец, член r A показывает изменение концентрации реагента А в элементарном объеме за счет химической реакции . Ему в уравнении (6) соответствует величина В А (х.р.

    Применительно к типу реактора и режиму его работы дифференциальное уравнение материального баланса (7) может быть преобразовано, что облегчает его решение.

    В том случае, когда параметры процесса постоянны во всем объеме реактора и во времени , нет необходимости составлять баланс в дифференциальной форме. Баланс составляют в конечных величинах , взяв разность значений параметров на входе в реактор и на выходе из него.

    Все процессы, протекающие в химических реакторах, подразделяют на:

    Стационарные (установившиеся);

    Нестационарные (неустановившиеся).

    К стационарным относят процессы, при которых в системе или в рассматриваемом элементарном объеме реакционной смеси параметры процесса (например, концентрация реагента А, температура и т.д.) не изменяются во времени, поэтому в реакторах отсутствует накопление вещества (или тепла) и производная от параметра по времени равна нулю.

    При нестационарных режимах параметры непостоянны во времени и всегда происходит накопление вещества (тепла).

    Материальный баланс является основой всех технологических расчетов. По данным материального баланса определяются размеры и число необходимых аппаратов, расход сырья и вспомогательных продуктов, вычисляются расходные коэффициенты по сырью, выявляются отходы производства.

    Материальный баланс представляет вещественное выражение закона сохранения массы применительно к химико-технологическому процессу: масса веществ, поступивших на технологическую операцию (приход) равна массе веществ, полученных в этой операции (расход), что записывается в виде уравнения баланса Σm приход = Σm расход.

    Статьями прихода и расхода в материальном балансе являются массы полезного компонента сырья (m 1), примесей в сырье (m 2), целевого продукта (m 3), побочных продуктов(m 4), отходов производства (m 5) и потерь (m 6), поступивших в производство или на данную операцию:

    m 1 + m 2 = m 3 + m 4 + m 5 + m 6

    Материальный баланс составляется на единицу времени (час), на единицу выпускной продукции, на один производственный поток или на мощность производства в целом.

    Таблица материального баланса для непрерывных процессов размещается на принципиальной технологической схеме внизу или на отдельных листах в следующем виде:

    Таблица 3.1 - Материальный баланс непрерывного процесса

    т.е. для каждого потока указывается его состав, расход в кг/час и нм 3 /час. Номера потоков проставляются на технологической схеме.

    Для периодических процессов материальный баланс составляется в виде таблицы 3.2.

    Таблица 3.2 – Материальный баланс периодического процесса

    На основании общего материального баланса производства определяются расходные коэффициенты сырья и вспомогательных материалов, необходимые для оценки экономической эффективности производства. Расходные коэффициенты сырья и вспомогательных материалов следует проводить в виде таблицы 3.3.

    Таблица 3.3 – Расходные коэффициенты сырья и вспомогательных материалов

    При составлении материальных балансов в качестве исходных данных могут быть заданы следующие величины.

    1. Годовая производительность по готовому продукту в т/год, которую для расчета надо перевести в кг/ч (приняв во внимание фактическое число часов работы установки в год).

    2. Состав исходного сырья и готового продукта. Если сырьё имеет очень сложный состав, то для расчета материального баланса можно принять условный, но вполне определенный состав. Соответственно принятому составу сырья рассчитывается состав продуктов реакции.

    3. Основные технологические параметры (температура, давление, мольное или массовое соотношение между реагентами), данные по конверсии и селективности. Конверсию и селективность можно принять на основе литературных и производственных данных или данных лабораторных исследований.

    4. Потери на каждой стадии процесса. Технологические потери возникают вследствие уноса части продуктов реакции с абгазами или с выводимыми потоками за счет частичного растворения, неполного извлечения в массообменных процессах (абсорбции, экстракции, ректификации и т.п.). Данные потери задаются или их значения выявляются на производственной практике. Если в проекте заложены новые процессы и аппараты, то необходимо провести предварительный расчет этих процессов для нахождения указанных величин.

    Все недостающие данные для составления материального баланса находят расчетным путем, основываясь на закономерностях химико-технологических процессов.

    При выполнении расчетов по составлению материальных балансов необходимо ясно представлять сущность процессов, протекающих на различных стадиях в том или ином аппарате. Целесообразно придерживаться следующего порядка:

    1. Составить технологическую схему процесса (без вспомогательного оборудования – насосов, компрессоров и т.д.) с нанесением всех аппаратов, где происходят изменения составов и величин материальных потоков.

    2. Составить уравнения химических реакций, протекающих в каждом из аппаратов, где имеет место химическое превращение. На их основе, если известны количество и состав выходящих из аппарата потоков, можно рассчитать необходимое количество исходных продуктов. И наоборот, если известны состав и количество исходных продуктов, то зная конверсию и селективность процесса, можно рассчитать состав и количество потока, выходящего из реакционного узла.

    3. Нанести на схему все известные числовые данные о количественном и качественном составе потоков.

    4. Установить, какие недостающие величины подлежат определению расчетным путем, и выяснить, какие математические соотношения надо составить для нахождения неизвестных величин.

    5. Располагая всеми нужными соотношениями между известными и неизвестными величинами, а также необходимыми справочными данными, приступают непосредственно к расчету материальных балансов.

    Ниже приводится порядок расчета материального баланса для наиболее общих случаев.

    Пример 1. Известно:

    ─ производительность по готовому продукту, т/год;

    ─ качество сырья и состав готового продукта, % масс.;

    ─ степень извлечения или коэффициент выхода готового продукта на всех стадиях процесса;

    ─ составы всех выходящих с установок производства потоков.

    Материальный баланс в этом случае составляется в следующей последовательности:

    1. Определяется в готовом продукте содержание целевого компонента и других примесей (кг/ч).

    2. Зная потери целевого продукта на каждой стадии (Р i) определяют, какое количество целевого компонента должно содержаться в исходной реакционной массе:

    С р.м. = С пр (100 + Σ % Р i),

    где С р.м. ─ содержание целевого компонента в исходной реакционной массе;

    % Р i ─ доля потери целевого компонента на каждой стадии;

    п ─ число стадий процесса.

    Пример 2. Известно:

    ─ производительность по готовому продукту в т/год;

    ─ показатели процесса ─ селективность, конверсия, соотношение исходных компонентов;

    ─ состав исходного сырья.

    В этом случае удобно производить расчет материального баланса на

    1000 кг перерабатываемого сырья. Расчет производится в следующей последовательности:

    1. На основании данных по составу сырья, конверсии, селективности, соотношению исходных реагентов, по уравнениям реакций определяют состав и величину потока реакционной массы.

    2. Проводят расчеты по определению величины потоков, входящих и выходящих из аппаратов, с учетом содержания целевого продукта в выходящих потоках.

    3. Определяют выход готового продукта на 1000 кг перерабатываемого сырья. Затем определяют коэффициент пересчета на заданную производительность по готовому продукту по формуле:

    где q з ─ заданная производительность по готовому продукту;

    q ─ количество готового продукта, полученного при переработке 1000 кг сырья.

    4. Составляется общий и постадийный материальный баланс производства с учетом коэффициента пересчета.

    Пример 3. Известно:

    ─ производительность по готовому продукту, содержание в нем целевого компонента;

    ─ основные показатели процесса ─ конверсия, селективность, условия процесса, соотношения исходных компонентов.

    В этом случае отсутствуют данные по степени извлечения основных компонентов, составу промежуточных потоков на стадиях разделения продуктов реакции.

    Для составления материального баланса производства удобно проводить расчет на 1000 кг сырья или одного из исходных компонентов в последовательности, изложенной во втором примере.

    Однако в данном случае для нахождения значений концентраций компонента в промежуточных потоках необходимо провести предварительный расчет аппаратов (конденсатора, сепаратора, ректификационной колонны и т.д.). Для этого задаются условиями работы аппарата (по производственным или литературным данным) и зная состав и количество потока, поступающего в аппарат, рассчитывают состав и количество потока, выходящего из аппарата и наоборот. При этом необходимо подобрать такие условия работы аппарата, которые обеспечивали бы максимальную степень извлечения полезного компонента, были бы экономически выгодными и при этом обеспечивались бы требования к качеству готового продукта и к нормам выбросов в атмосферу или в сточные воды.

    Таким образом, общий материальный баланс производства (установки) включает только потоки, входящие и выходящие с производства, а материальные балансы аппаратов включают характеристики входящих и выходящих потоков данного аппарата.

    В расчетно-пояснительной записке дипломного проекта при оформлении результатов расчета материального баланса должны быть приведены все имеющие место в процессе уравнения химических реакций и представлены проведенные по ним расчеты.

    В технологии органических веществ часто используются схемы с рециркуляцией потоков. В этом случае составление материального баланса установки усложняется. Главной задачей расчета с рециркуляцией является определение по заданному количеству перерабатываемого сырья выхода целевого продукта и суммарных загрузок каждого аппарата.

    Простейшая схема такой установки имеет вид:


    I ─ блок смешения; II ─ реакторный блок; III ─ блок разделения продуктов реакции.

    q 1 ─ поток свежего сырья;

    q 4 ─ поток готового продукта;

    q 5 ─ газы продувки;

    q 6 ─ поток рециркуляции.

    Рисунок 3.1 ─ Схема процесса с рециркуляцией и отдувкой части потока

    Исходя из заданной производительности по готовому продукту, всегда можно определить, сколько его должно содержаться в потоке q 4 , выходящем из реактора. Из данных по конверсии и селективности, которые бывают заданы при проектировании, и используя уравнения химических реакций, можно определить величину потока q 3 и его компонентный состав (содержание основных и побочных продуктов).

    Зная количество и состав потока q 3 , можно определить количество и состав потока q 2 , используя уравнения химических реакций. При расчете потока q 2 необходимо принять во внимание содержание в нем инертов, концентрация которых обычно задается или регламентируется исходя из технологических соображений. Количество инертов должно быть учтено и в последующих потоках.

    Величина потока q 4 и его состав определены производительностью установки по готовому продукту и требованиями к нему, которые, как правило, задаются.

    Для составления материального баланса всей установки и определения нагрузки на отдельные аппараты необходимо определить величину потоков q 1 , q 4 , q 6 и состав потока q 4 , q 6 (состав q 1 обычно задается при проектировании или определяется в дальнейшем с учетом конверсии и селективности процесса).

    Методы составления и расчета материальных балансов приведены в литературе .